行为型-Interpreter

解释器模式的原理和实现

命令模式的原理解读命令模式的英文翻译是 Command Design Pattern。在 GoF 的《设计模式》一书中,它是这么定义的:

The command pattern encapsulates a request as an object, thereby letting us parameterize other objects with different requests, queue or log requests, and support undoable operations.

翻译成中文就是下面这样。为了帮助你理解,我对这个翻译稍微做了补充和解释,也一起放在了下面的括号中。

命令模式将请求(命令)封装为一个对象,这样可以使用不同的请求参数化其他对象(将不同请求依赖注入到其他对象),并且能够支持请求(命令)的排队执行、记录日志、撤销等(附加控制)功能。

假设我们定义了一个新的加减乘除计算“语言”,语法规则如下:运算符只包含加、减、乘、除,并且没有优先级的概念;表达式(也就是前面提到的“句子”)中,先书写数字,后书写运算符,空格隔开;按照先后顺序,取出两个数字和一个运算符计算结果,结果重新放入数字的最头部位置,循环上述过程,直到只剩下一个数字,这个数字就是表达式最终的计算结果。
比如“ 8 3 2 4 - + * ”这样一个表达式,我们按照上面的语法规则来处理,取出数字 “8 3” 和“-”运算符,计算得到 5,于是表达式就变成了“ 5 2 4 + * ”。然后,我们再取出“ 5 2 ”和“ + ”运算符,计算得到 7,表达式就变成了“ 7 4 * ”。最后,我们取出“ 7 4”和“ * ”运算符,最终得到的结果就是 28。

解释器模式的代码实现比较灵活,没有固定的模板。我们前面也说过,应用设计模式主要是应对代码的复杂性,实际上,解释器模式也不例外。它的代码实现的核心思想,就是将语法解析的工作拆分到各个小类中,以此来避免大而全的解析类。一般的做法是,将语法规则拆分成一些小的独立的单元,然后对每个单元进行解析,最终合并为对整个语法规则的解析。

前面定义的语法规则有两类表达式,一类是数字,一类是运算符,运算符又包括加减乘除。利用解释器模式,我们把解析的工作拆分到 NumberExpression、AdditionExpression、SubstractionExpression、MultiplicationExpression、DivisionExpression 这样五个解析类中。

按照这个思路,我们对代码进行重构,重构之后的代码如下所示。当然,因为加减乘除表达式的解析比较简单,利用解释器模式的设计思路,看起来有点过度设计。不过呢,这里我主要是为了解释原理,你明白意思就好,不用过度细究这个例子。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
public interface Expression {
long interpret();
}

public class NumberExpression implements Expression {
private long number;

public NumberExpression(long number) {
this.number = number;
}

public NumberExpression(String number) {
this.number = Long.parseLong(number);
}

@Override
public long interpret() {
return this.number;
}
}

public class AdditionExpression implements Expression {
private Expression exp1;
private Expression exp2;

public AdditionExpression(Expression exp1, Expression exp2) {
this.exp1 = exp1;
this.exp2 = exp2;
}

@Override
public long interpret() {
return exp1.interpret() + exp2.interpret();
}
}
// SubstractionExpression/MultiplicationExpression/DivisionExpression与AdditionExpression代码结构类似,这里就省略了

public class ExpressionInterpreter {
private Deque<Expression> numbers = new LinkedList<>();

public long interpret(String expression) {
String[] elements = expression.split(" ");
int length = elements.length;
for (int i = 0; i < (length+1)/2; ++i) {
numbers.addLast(new NumberExpression(elements[i]));
}

for (int i = (length+1)/2; i < length; ++i) {
String operator = elements[i];
boolean isValid = "+".equals(operator) || "-".equals(operator)
|| "*".equals(operator) || "/".equals(operator);
if (!isValid) {
throw new RuntimeException("Expression is invalid: " + expression);
}

Expression exp1 = numbers.pollFirst();
Expression exp2 = numbers.pollFirst();
Expression combinedExp = null;
if (operator.equals("+")) {
combinedExp = new AdditionExpression(exp1, exp2);
} else if (operator.equals("-")) {
combinedExp = new AdditionExpression(exp1, exp2);
} else if (operator.equals("*")) {
combinedExp = new AdditionExpression(exp1, exp2);
} else if (operator.equals("/")) {
combinedExp = new AdditionExpression(exp1, exp2);
}
long result = combinedExp.interpret();
numbers.addFirst(new NumberExpression(result));
}

if (numbers.size() != 1) {
throw new RuntimeException("Expression is invalid: " + expression);
}

return numbers.pop().interpret();
}
}

解释器模式实战举例

接下来,我们再来看一个更加接近实战的例子,也就是咱们今天标题中的问题:如何实现一个自定义接口告警规则功能?

为了简化讲解和代码实现,我们假设自定义的告警规则只包含“||、&&、>、<、”这五个运算符,其中,“>、<、”运算符的优先级高于“||、&&”运算符,“&&”运算符优先级高于“||”。在表达式中,任意元素之间需要通过空格来分隔。除此之外,用户可以自定义要监控的 key。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class AlertRuleInterpreter {

// key1 > 100 && key2 < 1000 || key3 == 200
public AlertRuleInterpreter(String ruleExpression) {
//TODO:由你来完善
}

//<String, Long> apiStat = new HashMap<>();
//apiStat.put("key1", 103);
//apiStat.put("key2", 987);
public boolean interpret(Map<String, Long> stats) {
//TODO:由你来完善
}
}

public class DemoTest {
public static void main(String[] args) {
String rule = "key1 > 100 && key2 < 30 || key3 < 100 || key4 == 88";
AlertRuleInterpreter interpreter = new AlertRuleInterpreter(rule);
Map<String, Long> stats = new HashMap<>();
stats.put("key1", 101l);
stats.put("key3", 121l);
stats.put("key4", 88l);
boolean alert = interpreter.interpret(stats);
System.out.println(alert);
}
}

实际上,我们可以把自定义的告警规则,看作一种特殊“语言”的语法规则。我们实现一个解释器,能够根据规则,针对用户输入的数据,判断是否触发告警。利用解释器模式,我们把解析表达式的逻辑拆分到各个小类中,避免大而复杂的大类的出现。按照这个实现思路,我把刚刚的代码补全,如下所示,你可以拿你写的代码跟我写的对比一下。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
public interface Expression {
boolean interpret(Map<String, Long> stats);
}

public class GreaterExpression implements Expression {
private String key;
private long value;

public GreaterExpression(String strExpression) {
String[] elements = strExpression.trim().split("\\s+");
if (elements.length != 3 || !elements[1].trim().equals(">")) {
throw new RuntimeException("Expression is invalid: " + strExpression);
}
this.key = elements[0].trim();
this.value = Long.parseLong(elements[2].trim());
}

public GreaterExpression(String key, long value) {
this.key = key;
this.value = value;
}

@Override
public boolean interpret(Map<String, Long> stats) {
if (!stats.containsKey(key)) {
return false;
}
long statValue = stats.get(key);
return statValue > value;
}
}

// LessExpression/EqualExpression跟GreaterExpression代码类似,这里就省略了

public class AndExpression implements Expression {
private List<Expression> expressions = new ArrayList<>();

public AndExpression(String strAndExpression) {
String[] strExpressions = strAndExpression.split("&&");
for (String strExpr : strExpressions) {
if (strExpr.contains(">")) {
expressions.add(new GreaterExpression(strExpr));
} else if (strExpr.contains("<")) {
expressions.add(new LessExpression(strExpr));
} else if (strExpr.contains("==")) {
expressions.add(new EqualExpression(strExpr));
} else {
throw new RuntimeException("Expression is invalid: " + strAndExpression);
}
}
}

public AndExpression(List<Expression> expressions) {
this.expressions.addAll(expressions);
}

@Override
public boolean interpret(Map<String, Long> stats) {
for (Expression expr : expressions) {
if (!expr.interpret(stats)) {
return false;
}
}
return true;
}
}

public class OrExpression implements Expression {
private List<Expression> expressions = new ArrayList<>();

public OrExpression(String strOrExpression) {
String[] andExpressions = strOrExpression.split("\\|\\|");
for (String andExpr : andExpressions) {
expressions.add(new AndExpression(andExpr));
}
}

public OrExpression(List<Expression> expressions) {
this.expressions.addAll(expressions);
}

@Override
public boolean interpret(Map<String, Long> stats) {
for (Expression expr : expressions) {
if (expr.interpret(stats)) {
return true;
}
}
return false;
}
}

public class AlertRuleInterpreter {
private Expression expression;

public AlertRuleInterpreter(String ruleExpression) {
this.expression = new OrExpression(ruleExpression);
}

public boolean interpret(Map<String, Long> stats) {
return expression.interpret(stats);
}
}

在告警规则解析的例子中,如果我们要在表达式中支持括号“()”,那如何对代码进行重构呢?你可以把它当作练习,试着编写一下代码。

重点回顾

解释器模式的代码实现比较灵活,没有固定的模板。我们前面说过,应用设计模式主要是应对代码的复杂性,解释器模式也不例外。它的代码实现的核心思想,就是将语法解析的工作拆分到各个小类中,以此来避免大而全的解析类。一般的做法是,将语法规则拆分一些小的独立的单元,然后对每个单元进行解析,最终合并为对整个语法规则的解析。

参考

设计模式之美_设计模式_代码重构-极客时间
https://time.geekbang.org/column/intro/250